
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY 
ECE-5736: Reconfigurable Computing  Summer I 2020 

 

 

1 Instructor: Daniel Llamocca 

Laboratory 3 
(Due date: June 4th) 

 

OBJECTIVES 
✓ Design an AXI4-Full Interface for a custom VHDL peripheral. 
✓ Integrate the custom VHDL peripheral in an embedded system in Vivado. 
✓ Create a software application in SDK that can communicate with the custom peripheral. 
 

VHDL CODING 

✓ Refer to the Tutorial: VHDL for FPGAs for a tutorial and a list of examples. 

✓ Refer to the Tutorial: Embedded System Design for Zynq PSoC for information on how to create AXI interfaces for custom 

peripherals as well as embedded system integration in Vivado. 
 

FIRST ACTIVITY (100/100) 
▪ Custom Hardware Peripheral: Circular CORDIC Architecture (see Notes – Unit 3): 

✓ Operation: The circuit reads input data (16-bit Xin, 16-bit Yin, 16-bit Zin, and mode) when the s signal (usually a one-

cycle pulse) is asserted. When the result (16-bit Xout, 16-bit Yout, 16-bit Zout) is ready, the signal done is asserted. 

Only after this, we can feed a new input data set (with s = 1). This is an iterative circuit that keeps the output values until 

a new input data set is captured (with s=1). This is an advantageous feature. 

✓ VHDL design (provided in mycordic.zip): It uses the signed FX format [16 14] to represent the inputs and outputs. 

 
▪ Vivado: Create an AXI4-Full Interface for the iterative Circular CORDIC.  
▪ AXI4-Full Interface: A suggested architecture is depicted.  

✓ We use the same iFIFO/oFIFO approach used for the Pixel Processor (See Notes – Unit 5).  

✓ Note that the reset signal generated by FSM @ S_AXI_ACLK is active-high. 

✓ FSM @ S_AXI_ACLK: It is the same as the one used for the Pixel Processor. 
✓ FSM @ CLK_FX: This FSM controls the Input and Output interfaces to the FIFOs as well as FIFOs’ signals. 
✓ Input and Output Interfaces: Since AXI bus size is 32 bits wide, we need to properly route data in and out of the CORDIC 

circuit (49-bit input, 48-bit output). The 48-bit output is stored onto oFIFO as two 32-bit words via a MUX (no need for 

a buffer as the CORDIC result is kept until s is asserted again). This runs @ CLK_FX. We connect CLK_FX to S_AXI_ACLK. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1
6

3
2

Eri

sel

3
2

3
2

0

1

16

16

1
6 Circular CORDIC

s doneresetn

Xin

Yin

Zin

mode

Xout

Yout

Zout

S_AXI_AWID

S_AXI_AWADDR

S_AXI_AWLEN

S_AXI_AWSIZE

S_AXI_AWBURST

S_AXI_AWVALID

S_AXI_AWREADY

S_AXI_WDATA

S_AXI_WSTRB

S_AXI_WLAST

S_AXI_WVALID

S_AXI_WREADY

S_AXI_BID

S_AXI_BRESP

S_AXI_BVALID

S_AXI_BREADY

6

axi_arv _arr_flag

32

4

S_AXI_ARID

S_AXI_ARADDR

S_AXI_ARLEN

S_AXI_ARSIZE

S_AXI_ARBURST

S_AXI_ARVALID

S_AXI_ARREADY

S_AXI_RDATA

S_AXI_RRESP

S_AXI_RLAST

S_AXI_RVALID

S_AXI_RREADY

S_AXI_RID

8

3

2

2

6

8

3

2

2

32

mem_rden
mem_wren

a
x
i_

rv
a
lid

iFIFO

FWFT 

DO
rden

DI
w ren

fu
ll

e
m

p
ty

512x32

rst

FSM

oFIFO

FWFT 

DO
rden

DI
w ren

fu
ll

e
m

p
ty

512x32

rst

FSM

S_AXI_ACLK

CLKFX

oempty

orden

iempty

if ull

irden

owren

S_AXI_ARESETN

3
2

1
6 16

Input

Interface

O utput

Interface

s

0

http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
http://www.secs.oakland.edu/~llamocca/EmbSysZynq.html


ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY 
ECE-5736: Reconfigurable Computing  Summer I 2020 

 

 

2 Instructor: Daniel Llamocca 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

▪ If you prefer to use a different approach, provide a detailed schematic of your AXI4-Full interface and the FSMs. 
 
▪ Once you have your custom AXI4-Full Peripheral, integrate it into an embedded system using the Block-Based Design 

approach in Vivado. Synthesize, Implement, and generate the bitstream. 
 

SDK SOFTWARE APPLICATION 
▪ Since we have a FIFO-based system, we can write a chunk of input sets (two 32-bit words) and then retrieve the 

corresponding results. This is the optimal way to use this AXI4-Full Interface. You can also do it one input set at a time 
(write two 32-bit words, then read two 32-bit words). 

▪ Write a software application that test the circuit for the cases shown in the table. Write input data on the peripheral and 
retrieve output data form the peripheral. Print out the results as hexadecimal characters on the SDK terminal (via UART). 
Verify the results match the expected output results (approximately). 
✓ Note that the numbers are represented in signed FX format [16 14]. To convert from FX to decimal (and vice versa), use 

any online tool or these MATLAB/Octave scripts. 
 

𝐴𝑛 = 1.6468 
Input Data Expected Output Results 

𝑥0 𝑦0 𝑧0 𝑥𝑁 𝑦𝑁 𝑧𝑁 

Rotation Mode 

(mode = 0) 

0 1 𝐴𝑛⁄  𝜋 6⁄  −sin(𝜋 6⁄ ) cos(𝜋 6⁄ ) 0 

0 1 𝐴𝑛⁄  −𝜋 3⁄  −sin(−𝜋 3⁄ ) cos(−𝜋 3⁄ ) 0 

Vectoring Mode 

(mode = 1) 

0.8 0.8 0 𝐴𝑛√0.8
2 + 0.82 0 tan−1(1) 

0.5 1 0 𝐴𝑛√0.5
2 + 12 0 tan−1(2) 

 
▪ Download the hardware bitstream on the ZYNQ PSoC. 
▪ Launch your software application on the Zynq PS. The program should display the output results on the Terminal. 

Demonstrate this to your instructor. 
 
▪ Submit (as a .zip file) the generated files: VHDL code, .c files to Moodle (an assignment will be created). DO NOT submit 

the whole Vivado Project. 
 
 
 
 
 

Instructor signature: _____________________________  Date: __________________________ 

S1

1

FSM @ CLKFX

rst=1

iempty

irden 1,Eri  1

0

S2

iempty =0
& of ull=0

no

y es

irden 1, s 1

S3

iempty =0
& of ull=0

no

y es

S4

1

done

ow ren  1

0

sel 1

ow ren 1

S5

S2

http://www.secs.oakland.edu/~llamocca/dig_library/arith/script_fx2dec_converter.zip

